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High-Reynolds-number steady flow in an annular pipe which encounters a shallow 
axisymmetric expansion or indentation in the walls is studied using interactive 
boundary-layer theory. The flow upstream of the indentation (x < 0) is fully 
developed; the ratio of the shear rate on the outer wall to that on the inner wall is 
denoted by p (0 < p < 1 ) ;  similarity solutions are found for the case where the wall 
perturbations are proportional to d. The solution is unique in a constriction, when 
the pressure gradient (represented by a parameter b )  is favourable ( b  < 0). In an 
expansion, however, with an adverse pressure gradient, three different solutions are 
found if b exceeds a critical value b,. When p + 1, one of these solutions, representing 
a flow that is attached on the inner wall and separated (i.e. has negative wall shear) 
on the outer, is a continuation of the unique doubly attached flow at small b. The 
other two, one separated on the inner and not the outer wall and the other separated 
on both walls, arise from a saddle-node bifurcation at  b = b,. The doubly separated 
flow is never stable, as observed in diffusers. In the case of a planar channel (p  = 1 )  
symmetry is restored, and the non-uniqueness arises through a supercritical 
pitchfork bifurcation. This agrees with previous computations on channel flow, but 
not with Jeffery-Hamel flow, for which the bifurcation is subcritical. 

1. Introduction 
It is well known that steady flow in a diffuser, that is a pipe or channel whose cross- 

sectional area increases gradually with distance, is usually non-unique. Even when 
the geometry is symmetric, so that a symmetric solution to the equation of motion 
must exist, the flow is normally asymmetric, clinging to one wall or another (figure 
1 ; see Reneau, Johnston & Kline 1967 ; Ward-Smith 1980) ; only when the expansion 
is sharp is the symmetric ‘jet flow’ observed. Sobey & Drazin (1986) have studied 
experimentally and numerically the flow in a two-dimensional channel which consists 
of a long straight segment (of length Lh and width Dh) with a smooth symmetric 
constriction to width h and re-expansion at  each end (the numerical results were 
obtained with periodic boundary conditions) ; typically L was 80 and D ( > 1) took 
values up to 3. They showed that the symmetric flow, which does involve separation 
and negative fluid velocities, as depicted in fig. l(a),  is stable at  sufficiently low 
values of the Reynolds number R = &/v (where Q is the volume flow rate per unit 
depth of the channel and v is the fluid kinematic viscosity ; this definition of R is a 
factor of 2 greater than in Sobey and Drazin’s notation), but that i t  experiences a 
supercritical pitchfork bifurcation (or a series of such bifurcations) for R between 
about 12 and about 40 (when D = 3), above which one of the two equivalent 
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FIGURE 1.  Sketches of symmetric and asymmetric flow in a symmetric expansion ; the symmetric 
flow is unstable and not observed except at very small Reynolds number. 

asymmetric flows is stable. Sobey (1985) made similar observations for flow in a 
channel consisting of two long segments (widths h and 3h) with a smooth symmetric 
expansion between them. Sobey & Drazin went on to show that the bifurcation 
structure of t,he space of possible flows in this geometry becomes quite intricate a t  
larger values of R. 

These authors, together with Banks, Drazin & Zaturska (1988), sought to model 
the bifurcation structure of non-uniform channel flow by examining the simpler 
geometry of Jeffery-Hamel flow between plane walls inclined a t  an angle 2a. 
Building on the pioneering work of Fraenkel (1962, 1963), they showed (among 
other things) that, a t  fixed but non-zero x, the first bifurcation to occur as R is 
increased is a subcritical pitchfork, at R = R,(a), where R, - 9 . 4 2 1 ~  as a+O, and 
above that value a stable asymmetric flow cannot be found. Thus Jeffery-Hamel 
flow is shown not to be a very good model for the experimental situation, and 
examining bifurcations in other simple channel flows could be of considerable 
interest, to see if they are more relevant to the experiments, or are better modelled 
by Jeffery-Hamel flow, or indeed exhibit yet another, different type of initial 
bifurcation. 

A feature of Jeffery-Hamel flow is that no bifurcations are found if the boundary- 
layer approximation is made a t  the start, i.e. if a -+ 0 with aR held constant, and then 
aR is increased. In  this paper we examine a class of channel flows which are governed 
by the boundary-layer equations, and we find non-uniqueness and bifurcation in 
them. The analogous external flow is the Falkner-Skan boundary layer undergoing 
a small adverse pressure gradient (see Banks & Drazin 1973). (Smith 1984, has 
pointed out the presence of non-uniqueness in unbounded flows governed by the 
boundary-layer equations with zero external pressure gradient (wakes and external 
boundary layers), the non-standard flows involving large regions of reversed flow. He 
speculates, however, that a downstream obstacle of some sort will be required to 
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generate the flows in question, since experimental and numerical evidence suggests 
that the standard solutions exist and are stable until instability sets in.) 

The flow to be considered in this paper is a generalization of one that was also 
previously examined by Smith (19764 : high-Reynolds-number flow in a parallel- 
sided channel which encounters a shallow indentation or expansion in one or both 
walls. The scalings are such that the oncoming Poiseuille flow is merely displaced and 
viscosity has no influence except in thin boundary layers on the walls. The 
generalization here is to treat annular as well as planar channels ; the application we 
had in mind was to understand the effect of inserting a catheter with a balloon of 
variable diameter on it into an artery (such a device is used in the aorta to give 
assistance to a weak heart, especially during surgery) ; annular diffusers are used in 
engineering contexts too (Ward-Smith 1980). Mathematically the results are as easy 
to compute and to interpret in the annular case, the planar case being but one limit. 
The detailed calculations are made using similarity solutions to the equations for a 
class of expansion shapes in which the height of the perturbation is proportional to 
xi, where x is the distance downstream from the start of the expansion. 

The conclusion is that the flow is non-unique in channels with a sufficiently adverse 
pressure gradient (b, say). For planar channels there is a supercritical pitchfork 
bifurcation a t  a critical value of b, say b,. For b < b, the flow is attached on both 
walls, whilst the two (presumably) stable flows for b > be are separated on one wall 
and attached on the other. The unstable symmetric flow for b > b, is separated on 
both walls. For an annular geometry this symmetry is broken, and the bifurcation 
diagram splits into two branches, only one of which connects to the unique small-b 
solution. The doubly separated flow is still unstable, however. 

The problem is formulated in $2 and solved in $3; $3.1 contains the small-lbl 
solution, $3.2 contains an inviscid large-(bl solution which may not represent a 
realizable flow but raises the possibility of non-uniqueness, while $3.3 contains the 
similarity solutions. The bifurcation structure is discussed in $4, and $ 5  provides 
further discussion, mainly on the implications for more general channel flows and 
their computation. 

2. Formulation 
The unperturbed annular pipe is taken to have radii a,, a0p (p > 1) and the 

oncoming parallel flow has velocity profile U t  U,(r),  where a, r is the radial coordinate, 

- (r2 - 1) log p + (p2 - 1) log r 
p2- 1 - 2 log p U,(r) = (2.1) 

and the velocity scale lJ$ has been chosen to that Uo(l) = 1. The dimensionless shear 

As p-+ 00, p - 2 logplp; in the planar limit, both p and p become 1. 
The walls are taken to be unperturbed for x < 0, where the longitudinal coordinate 

is taken to be a, Ax, A( D 1) being a scaling to be specified. For x > 0 we take the walls 

(2.3) 
to be a t  

where E (  < 1) is the amplitude parameter. Following Smith (1976a) we take 

(2.4) 

r = 1 +#(x), r = p-eF(x),  

= R-ia-$, A = R-' 2a -' 2 ,  
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where a( = € / A )  is a scale for the slope of the perturbed walls. This must lie in the 
range 

so that viscous forces are not important over the whole cross-section (R-l 4 a )  and 
the cross-stream pressure gradient induced by the disturbance is negligible. The 
viscous boundary layers have dimensionless thickness e. 

The Navier-Stokes and continuity equations are expressed in terms of cylindrical 
polar coordinates (a, Ax, a, r ,  O ) ,  with corresponding velocity components U$(u, h-lv, 
0) and pressure -,uU,*kAx/a,+pU$2p (where k is a numerical constant). In 
dimensionless form the equations are 

(ru), + (rv), = 07 (2.5) 

uu,+uv, = (2.6) 

uv, + vv, = - h2p, + - vrr + - v, - - + A-2v , 

R A (  : ,“I 4 
In  th  core, awa from the walls, viscosity is negligible and when the velocity field 
is expanded in powers of 6,  the first perturbation is found to be a pure radial 
displacement of the streamlines with no cross-stream pressure gradient : 

u = U,(r )+eU,(x , r )+  ... 
v = eK(z, r )  + ..., p = e2P(z) + ..., 

where U, = A ( x )  Uo(r)/r7 V, = -A’(%) Uo(r) / r .  

The displacement function A ( x )  and pressure perturbation function P ( x )  are as yet 
arbitrary. 

A t  a dimensionless distance of E from the walls both U, and eU, are of the same 
order of magnitude and, since E = (A/R)i, the viscous terms in (2.6) become as 
important as the inertia terms. We rescale the variables accordingly in the two 
boundary layers, and make the Prandtl transformation. Thus in the layer near r = 1 
we write 

r = 1 +E[F(z)  + r], p = e2P(z),  

u = E U ( X ,  Y), v = € 2 [ V ( X ,  Y)+ U(X, Y)F(z)] ,  

giving the following boundary-layer problem : 

uu, -I- vu, = - P ( x )  + U,,, U, + v, = 0, 

U = V = O  on Y=O,  

U -  Y + F ( x ) + A ( z )  as Y+m. 

( 2 . 1 0 ~ )  

(2.10 b)  

(2.10c) 

In the layer near r = p we also write 

r = p-s[F(x)+ FI, p = E ~ P ( x ) ,  

u = E Q X ,  F), v = -€2[P(Z, F)+O(s, E)Pl(s)], 
which lead to the same equations and wall boundary conditions, (2.10a, b ) ,  for 0, 
as for U,  V ,  but the outer boundary condition is different : 

(2.11) 
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Smith (1976a) noticed that, in the planar case p = /3 = 1,  the two boundary-layer 
problems are identical, since the outer boundary condition could be written Uu+ 1 
as Y + co or og + 1 as F+ cm. Assuming a unique solution, he could therefore deduce 
that F + A = P - A ,  and hence that 

A = !j(F-P). (2.12) 

The symmetry is broken when p =/= 1 80, even on the assumption of a unique solution, 
we cannot make a corresponding deduction without solving the boundary-layer 
problems first. 

3. Solutions 
3.1. Linearized problem 

In the small-amplitude case the solution to the boundary-layer problems is unique, 
and we outline it only briefly since it directly follows that of Smith (1976~) .  We 
introduce a small parameter h, and set 

A = ha@), F = hf ( z ) ,  P = hf”(z), P = hp(z),  

U = y+ hti,(z, Y), V = hV(z, Y), 0 = pP+ h.ii(z, F), V = hv’(x, P). 
The continuity equation and the wall boundary conditions are the same as in the 
nonlinear case (2.10a, b)  ; the linearized momentum equations ( 2 . 1 0 ~ )  and outer 
boundary conditions (2 .10c) ,  (2.11) become 

Yaz+v= -p’(z)+tJu,,  pFc,+pV“ = -p’(z)+.i igg (3.1) 

and g+f+a  as Y+W,  ii-+p(f-a/p) as F+co. (3.2) 
The problems are solved using Fourier transforms in x, with the notation 

$(k) = p ( z )  e-ik” dz, 

and it is seen that the transforms of the shear-rate perturbations, .f = t& and P = i&, 
satisfy Airy’s equation. The coefficients of the relevant Airy functions are expressed 
in terms of I;  by evaluating the transforms of (3.1) at Y ,  = 0, and two equations for 
I;  and Ci are then obtained from (3.2). The results are 

I;  = 3 Ai’(0) (ik)-s- 

(3.3) 

from the second of which we can deduce immediately how the displacement of the 
core flow depends on the wall shapes: 

This formula can indeed be seen to reduce to (2.12) in the planar case p = B = 1. 
Inversion of (3.3) and the corresponding transform of the wall shear perturbations 

70, ?,, is straightforward and yields no surprises, the results being qualitatively similar 
to those of Smith (1976~) .  For example, if 

f(z) = ze - zH(x) ,  Ax) = o 
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FIGURE 2. Normalized pressure and shear rate perturbations, as functions of z, calculated from 
linear theory for an indentation whose shape is given by F ( x ) .  

(where H ( z )  is the Heaviside step function), p,  T~ and 7, = p-bo are all zero for 
x < 0, and for x > 0 behave as shown in figure 2. The pressure peak is downstream of 
the peak wall indentation, and the wall shear peak is still further downstream. It 
can be seen that both p and T,, decay algebraically as x + + co , not exponentially like 
f : p  cc x-i, 70 cc x-i. For future reference we note the solution when f, f themselves 
vary algebraically : 

f = $x"H(x), f= qJx"H(x), (3.5) 

(3.7) 

Recalling that Ai'(0) < 0 while Ai(0) > 0, we see that, as expected, the pressure 
gradient becomes adverse and the wall shear perturbation becomes negative only 
when the overall cross-sectional area of the channel increases with x, i.e. - b  = 
q5+/36 < 0. The magnitude of p grows with x for all a > 0, while the wall shear 
perturbation grows only if a > 4; it is interesting that the wall shear is independent 
of x if a = g. 

3.2. Large-amplitude limit 
This is the limit h-t co, taken after all the other limits, so that sh 4 1, for example. 
In this case most of the wall layer responds in an inviscid manner to the imposed 
perturbation, relegating viscous effects to an even thinner layer at the wall, of 
thickness &-;ao. Of course, that viscous layer is a classical boundary layer, in which 
the pressure gradient, of O(h2),  is imposed from outside, rather than an interactive 
boundary layer like the primary one, so it will inevitably experience a Goldstein 
singularity for a sufficiently adverse pressure gradient. Nevertheless the solutions are 
revealing, because they provide an analytical indication of non-unique solutions to 
the boundary-layer problems posed in $ 2 .  
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For inviscid flow, the vorticity in the boundary layers remains uniform, and the 
solutions are : 

u = Y + F + A ,  v = - Y(F’+A’) ,  0 = p ( F + F - A / P ) ,  P = - F p ( F % 4 ’ / / ? )  

so the pressure gradient is given by both 

- P  = (F + A )  (F’+A’) 

and - P  = pZ(P-A/P) (P/-A’//3).  

We deduce, therefore, that 
(F+A)’  = p2(@-A//3)’, 

which has two solutions for A 
F-p@ A ,  = -- F +p@ 

1 - P l P ’  1 + P / P  
A =-- 

The corresponding pressure gradient are 

d 
Z ( P / p -  1), dx 

d 1 
- 2(P/p+ l),dx 

- (F  + @)2, 

- (F + /3F)Z, 

1 p =-  

p’ - - 

(3.9a) 

(3.9b) 

while the slip velocities on Y = 0 and P = 0, Us and Ds respectively, are given by 

(3.10a) 

(3.10 b )  

if a slip velocity is positive it can be thought of as corresponding to an attached flow, 
and if it is negative to a separated flow, although in the latter case there would not 
be a solution for the viscous sublayer, so the flow would not be realizable. However, 
the above solutions do suggest the possibility of having either ‘symmetric’ flows (the 
second solution), attached on both walls when the cross-sectional area of the annulus 
is lower than its unperturbed valve ( F + @  > 0) ,  and separated on both walls when 
it is higher, or ‘asymmetric’ flows, attached on one wall and separated on the other 
(the first solution). It is interesting to note that both solutions involve a favourable 
pressure gradient whenever F +/3@ is increasing in magnitude, whatever its sign. 
It should also be remarked that the first solution is singular in the planar limit 
p = ,!I = 1 .  Probably the only one of these solutions to be physically realizable is the 
second solution in the case of narrowing area and favourable pressure gradient, 
P + /3F positive and increasing. 

3.3. Similarity solutions 
Here we bridge the gap between small- and large-amplitude flows, not by providing 
numerical solutions to the coupled boundary-layer problems of (2.10-2.1 l ) ,  but by 
concentrating on a wall shape that permits a similarity solution, so that only 
ordinary differential equations need to be integrated numerically. 

Similarity solutions can be found when, for x > 0, 

F = $xi, P = $xi, (3.11) 
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4 = @xi, p = (3.12) 

The boundary-layer thicknesses also increase like xf, and the longitudinal velocities 
in them do too. Thus in the layer on the inner wall we write 

u = xig'(?j), v = ixx-i(yg'-2g), 7 = Y/xf, 

and equations (2.10) are satisfied if 

(3.13) 

(3.14) 

(3.15) 

where Q(@) also satisfies equation (3.13) and boundary conditions (3.14), but the outer 
boundary condition is ~"'(v) - p(q+qT-@/p) as q-  03. (3.16) 

Equation (3.13) is familiar as the Falkner-Skan equation, but the different boundary 
condition at infinity, and the coupling of the equations for the two boundary layers, 
introduce a number of novel features to  the solution. Note that a positive value of 
A corresponds to a positive value of dP/dx, and hence to an adverse pressure 
gradient. 

We note first that (3.13) can be rescaled to  take one of two standard forms, 
depending only on the sign of A and not on its magnitude. Setting 

where 

we obtain 

(3.17) 

(3.18) 

(3.19) 

where s = & 1, and the inner boundary conditions (3.14) remain unchanged: 

G ( 0 )  = G(0) = 0. (3.20 a )  

Thus, if we were to specify the wall shear rate, 

G ( 0 )  = 6,  (3.20 b )  

say, we could integrate (3.19) forward in z and achieve two unique solutions (one for 
each sign on the right-hand side). It can be shown (see Appendix A) that this solution 
either has a singularity at a finite value of z or tends to the following form a t  infinity : 

G(z) - iCz2+yz+B+o(l), (3.21) 

where < 2 0;  moreover the singular solution is not attained when s = + 1 (adverse 
pressure gradient) for any 6. Numerical solution shows further that, when s = - 1 
(favourable pressure gradient), the solution tends smoothly to the form (3.21) if 6 
exceeds a positive critical value, 8, = 1.5700 ... . Numerical integration of (3.19), 
subject to (3.20a, b ) ,  can therefore be use to  calculate four universal functions, 
which we can call 5,(6), y+(6),  where 6, is the value of G ( c o )  and y +  the value of 
[ G ( z )  - 5, z ] ~ + ~  for s = & 1 ; the + functions are defined for all 6 and the - functions 
are defined only for 6 > 6, (note that t (6 , )  = 0, corresponding to a conventional 
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Falkner-Skan boundary layer with a uniform velocity a t  infinity). The functions 

K * ( @  = Y * M < * ( 4 - i  (3.22) 
<*(el and 

are plotted over a limited range of 8 in figures 3 and 4 .  The range may easily be 
extended further, but it is perhaps adequate to note the asymptotic forms, also 
obtained in Appendix A 1 

y+(e) - e+r(;)(gpe-;+ ..., ( 3 . 2 3 ~ )  

as 8++co, and 
<+(8) - 9.17181 (log181)2 K+(O) - -4.1910g181 

(3.236)  

(3.24 a ,  b )  

as 8 + - co . (These asymptotic forms for 8 + - co have interesting implications for 
grossly separated flow, as discussed in Appendix A, § A 3.)  

Armed with these universal functions, solution of the original problem is now only 
a matter of solving transcendental equations. Let 8 be the value of G(02 
corresponding to the inner boundary layer (so that g"(0) = $ ~ - ~ 8 ) ,  and let 8 
correspond to the outer layer (Q"(0) = + ~ - ~ 6 ) .  Then the outer boundary conditions 

(3.25 a, b)  

$x-"g, (6) = Pt ix-2Yk (4 = P(6 -  @/PI. (3.25c, d )  

Now A ,  and hence x, is not known a priori and nor is @, but q5 and 6 are known. 
Eliminating x from ( 3 . 2 5 ~ )  and (3.256) and using (3.22) gives 

and 

(3.26 a )  

(3.26 b) 

Finally, eliminating @ gives 

( $ i [ K * ( 8 ) + p p - i K + ( 8 ) ]  = g$+& - b ;  (3.27) 

the quantity b will henceforth be used to represent the magnitude of the pressure 
gradient. It is worth remarking that, since K+ < 0 and K- > 0 for all 8 for which they 
exist (figures 3 , 4 )  negative values of b correspond to the minus sign, i.e. a favourable 
pressure gradient, and positive values to the plus sign, i.e. an adverse pressure 
gradient. This is exactly as expected, since q5+pq5 >/< 0 corresponds to a 
reduction/increase in channel cross-sectional area. Note too that ( 3 . 2 5 ~  and e )  can be 

(3.28) 

and, given 8 or 8, either of those equations can be used to determine x and hence lAl 
from (3 .18) .  

To find 8 and 8 requires solving the transcendental equations (3.27) and (3.28).  
Consider first flows with favourable pressure gradients, corresponding to s = - 1 in 
(3 .19) ,  the lower sign in g + ,  and b < 0. Given p < 1 and 8 > 8,, 8 can be read off from 
figure 3 using (3.28),  the corresponding values of K can also be read off from figure 3,  
and the (negative) value of b can be determined from (3 .27) .  The relationship between 
8 and b is clearly one-to-one, and can be readily inverted; the problem has a unique 
solution. The graphs of - b and 8 against 8 for the case p = 0.8 (p  = 1.922) a;e given 
in figure 5 .  The 8(8) graph (figure 5 a )  is virtually linear; in fact p(8-8,)- (8-0,) is 
zero at 8 = 8, and remains extremely small, increasing to only about 0.4 when 8 = 
4.0.  In figure 5 (b)  - b becomes infinite a t  0 = 8, because K-(@ does ; this corresponds 
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FIGURE 3. Universal functions [-(@), K- (O)  for 5 = - 1 (favourable pressure gradient). 

15.. 

- K+ 

- 1  0 1 2 3 4 5 5.5 
0 

FIGURE 4. Universal functions [+(O), - K + ( O )  for 9 = + 1 (adverse pressure gradient). 

to the large-amplitude solution of $3.2. As O+ co, the asymptotic expansions (3.23) .~ 

can be used with (3.27) to show that 
- 

4 2-4 $+p$ 
0 - 5  = -___ 

r(g,1+ pp-g ’ 
and together with (3.25a), (3.18) and (3.12) this gives precisely (3.6) for the pressure 
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FIGURE 5. (a )  Outer wall shear (e), and (6) (favourable) pressure gradient ( - 6 )  as functions of 
inner wall shear (0). for s = - 1, p = 0.8. 

distribution (since Ai'(0) = -3t / f ( ; ) ) .  In other words the (unique) solution for a 
favourable pressure gradient as 8-t  co is the same as the small-amplitude solution 
calculated in $3.1, asexpected. (Note that p8-8 tends to zero as 8-t  co, from ( 3 . 2 3 ~ )  
and (3.28), so p(8-6,)-(8"-8,) will tend to 0.31.) 

Second, we consider flows with an adverse pressure gradient (s = + 1) and positive 
b,  for which c+(8) and - K + ( O )  are plotted in figure 4. The curve of c+(8) has a single 
minimum at 8 = 0, with c + ( O )  = go x 2.014 and increases as 181 increases (further 
computation indicates monotonic behaviour between the ends of figure 4 and the 
asymptotic zones of (3.23) and (3.24)). Thus, for a given 8 there are either no 
corresponding values of 3, if c+(8) < p-lc0 (from (3.28)), or there are two such values, 
one positive and one negative. Therefore there are two (or no) corresponding values 
of b. A given value of c+(8), and hence a given pair of values of 6, corresponds to a 
different value of 181 according as 6' is positive or negative. (It should be remembered 
that a negative value of 8 or 8" means negative shear at the corresponding wall and 
hence (in that sense) separated flow.) Thus four pairs of graphs like those of figure 5 
must be drawn for each value of p. Figure 6 has the four graphs of 8(8) for p = 0.8; 
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1.0 - 

0 4 2 4 6 8 0  8 , 2  4 6 8 

+ B  +e 

-e -6 

FIGURE 6. Outer wall shear (@) as a fcnction of inner yall shear (8) for _adverse pressure gradient, 

scales are different according to the signs of 8, 8. 
s = +i,  p =o .B:  (a) e >  0, e > o ;  ( b )  8 < 0, e > 0; (c) 8 > 0, e < 0; (d )  e <o ,  8 < 0. Note that the 

note that there are no solutions for 8, < 8 < e2, where 8, = -0.58 and e2 = 1.09 (to 
two decimal places), for are the values of 8 a t  which [+(8) = p-l[,, and hence a t  
which 8 = 0. 

Figure 7 contains in one diagram the four corresponding plots of b(8) ,  the four 
branches of the figure being labelled with the same letters as the four parts of figure 
6: (a)  corresponds to 8 > 0, 8> 0; (b)  to 8 > 0, s"< 0; (G) to 8 < 0, s" > 0; and ( d )  to 
8 < 0, 8 < 0. The two dots are the points of transition between one branch and 
another, with 8 = 8, and O2 respectively. It is particularly interesting that b has a 
minimum value (say b,, x 5.05), for a negative value of 8 that is different from O1 (say 

We are now in a position to determine what flows are possible in a given geometry 
when the pressure gradient is adverse (b  > 0). If b is sufficiently small only one flow 
is possible, represented by branch (a) ,  for which both 8 and 6 are positive, i.e. the flow 
on both walls is attached. In the limit of small b (8+ co) this corresponds to the linear 
solution of $3.1, as in the case of favourable pressure gradient, As b increases above 

8,, x -0.77). 
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FIQURE 7. B as a function of b (adverse pressure gradient) for p = 0.8. Branches (a), (b), and 
( c ) ,  (d) ,  separated by the dots, correspond to the four panels of figure 0. 

the value b, (x  3.96) at which 6 is a minimum (8,) there is a smooth transition to a 
still unique state, branch (b) ,  in which 8 <  0, and which we can think of as 
representing a flow which is separated on the outer boundary while still being 
attached on the inner. However, when b exceeds b, there is a bifurcation to a state 
of three possible flows. One is still branch I p ) ,  but the other two are, at first, two 
different examples of flows with 8 < 0 and 8 > 0 (branch ( c ) ) ,  i.e. separated flow on 
the inner wall and attached flow on the outer. Only when b exceeds the value 
b, ( x  6.14) ,  where 8 = 8, is a local maximum, does one of these flows experience a 
smooth transition to one which is separated on both walls, i.e. 8 < 0 and 8 c 0 (branch 
( d ) ) .  The bifurcation at (be, 8,) is discussed further in $4 below. 

The asymptotic expansions (3.23) and (3.24) can be used to derive the form taken 
by the curves in figures 6 and 7 as 101 and 181 becomes very large. If both 8 and 8 tend 
to +a, (branch (a) )  then (3.28) with ( 3 . 2 3 ~ )  gives 8"-p8, and (3.27) with (3.233) 
gives b_- 2)r($) (1 + &-') 8-3 + 0 ; this limit again recovers the linearized solution. If 
8 and 8 both tend to - co (branch ( d ) ) ,  then (3.28) with ( 3 . 2 4 ~ )  again give 8 - p8; 
in this case (3.243) gives 6 - (:)44.19 (1 +pp-;) (log 181) which tends to infinity. If 8 or 
6 have opposite signs (branch (6) or ( c ) ) ,  then the positive one will have a much larger 
magnitude than the negative one, as can be seen from any one of figure 4, figure 6 
or the asymptotic expansions, and the negative one will make the dominant 
contribution to b, which will tend to infinity logarithmically, as on branch ( d )  of 
figure 7 ,  but more slowly in either case. 

4. Bifurcation diagrams 
Figure 7 can be thought of as a bifurcation diagram for the system being 

investigated, but it does not have a conventional shape, indicating that 8 is not a 
suitable state variable to plot against the bifurcation parameter b. Ideally we would 
use a variable which tended to zero as b+O. Moreover, bearing in mind Sobey & 
Drazin's (1986) results, it  is desirable also to have a variable which would be zero for 
a symmetric flow in a symmetric channel. In  that case (p  = 1) such a variable is 8-8. 
A more general state variable which takes that form when p = 1 and also tends to 
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FIGURE 8. Bifurcation diagram of p8-& as a function of b (adverse pressure gradient) for p = 0.8. 
Branches ( a ) ,  ( b )  and (c ) ,  (d ) ,  separated by the dots, correspond to the four panels of figure 6. Point 
C. where b = 11,. is a saddle-node bifurcation point; branches (CJ, ( d )  probably rorrespond to 
unstable solutions. 

zero when b -+ 0 is p8- 8; the second property follows from (3.28) and the asymptotic 
results (3 .23a) ,  as noted at the end of $3. We also saw there that p0-6+0 as 
b -+ cc along branch ( d ) .  Thus in figure 8 we replot figure 7 with that variable ; the dots 
are again the transition points between the different branches, and the point C is the 
bifurcation point such that forb > b, there are three possible solutions. The fact that 
branch ( d )  crosses the axis instead of tending to zero probably indicates numerical 
error in the interpolation scheme used, although much larger values of b would 
anyway be required for the large-18) asymptotics to be applicable. 

Figure 8 is now of familiar form. One would expect that, if b were increased 
gradually from zero, stable flow on branch (a) would give way to stable flow on 
branch ( b ) ,  and that would persist for b > b,. However, different initial conditions 
could lead to one of the other flows being chosen instead. It is probable that only one 
of the other possible flows could occur because the other would be unstable. 
Generically, a bifurcation of the type encountered at C is a saddle-node bifurcation, 
the saddle branch of which is unstable. Indeed, one can be confident in predicting 
that the unstable branch is the intermediate one, marked (c,) and (d )  in figure 8, 
since, again generically, the stability of alternate solution branches also alternates. 
Moreover, common experience with flow in diffusers indicates that a steady flow that 
is separated on both walls (branch (d) )  is never seen (see 5 1) .  The results of the next 
two paragraphs make the conclusion virtually certain. 

The other parameter that can be varied in our system is the geometric parameter 
p,  equal to 0.8 in figure 8. It is particularly interesting to see what the results look 
like for a planar geometry, with p = p = 1,  and with an adverse pressure gradient 
( - b  = r$+$ < 0). The universal functions of figure 4 are of course unchanged, but 
there are now two values of 6 corresponding to every value of 8 + 0, and 8 = 0 when 
8 = 0. Thus the arguments of 53.4 can be repeated, except that the three critical 
values, b,, b,, b, on figure 8 coalesce, and there is just one bifurcation point, on the 
8 = 0 axis. The bifurcation diagram corresponding to figure 8 is given in figure 9. For 
b small enough, there is one solution on branch (a)  with the boundary layer attached 
on each wall. Because there is no way of distinguishing between the two walls, this 
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PO - 

FIQURE 9. As for figure 8, but for a planar channel with p = 1. The bifurcation a t  C is a super- 
critical pitchfork. 

flow must be the symmetric one investigated by Smith ( 1 9 7 6 ~ ) .  However, when 
b > b,, there are three solutions, only one of which, branch (d) ,  can be symmetric (and 
corresponds to Smith’s solution for which symmetry was imposed) ; this solution 
represents a flow separated on both walls. The other two solutions, which must be 
mirror images of each other, are asymmetric ones in which the boundary layer is 
attached on one wall and separated on the other. 

Figure 9 shows a supercritical pitchfork bifurcation, and even without performing 
a stability analysis we can be certain that branch ( d )  will be unstable, and which of 
branches ( b )  or (c) is chosen in an experiment will depend on chance or small 
inescapable asymmetries. As soon as p is given a value different from 1, however, the 
symmetry is broken and the diagram takes the form of figure 8. (Note that in this 
paper p is always < 1 ; a value of p > 1 merely corresponds to taking 6 as the wall 
shear on the outer, not the inner, wall. If we took p = 1/0.8, figure 8 would be 
replaced by its mirror image in the b-axis.) The solutions on branch (c,) and (d )  in 
figure 8 lie on the unstable surface and are presumably unstable. The symmetry 
breaking can be analysed simply when 1 - p  4 1, as shown in Appendix B. 

5. Discussion 
It is important to establish both whether the similarity solutions derived above 

represent real flows, which could be realized with a sufficiently carefully controlled 
experiment, and whether similar results would be expected for more general wall 
shapes than those given by (3.11). If the former is true the latter may be expected 
to follow. 

One caveat that ought to be stated first concerning the bifurcation studied in this 
paper is that it may not be the only one to cause breakdown of symmetric flow in an 
expanding channel. In  practice there could be an instability to a three-dimensional 
or oscillatory disturbance at a lower Reynolds number than that a t  which, for a given 
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adverse pressure gradient, the present non-uniqueness sets in, and the present theory 
can say nothing about that. The following discussion is made on the assumption that 
such additional bifurcations are not the first to occur. 

The main problem with the wall shapes (3.11) is the fact that their slopes (e.g. 
a = g$x-i) become infinite as x + 0 + , so that the small-slope condition for validity of 
the theory (a 4 R-;) breaks down at x - #gRh. However, one can in principle 
construct a channel for which the slope remains small and f - 4x4 as x+ co ; a 

(5.1) 
suitable example is 

for any positive constant p, whose maximum slope is 0.636$p-f. We assume for 
simplicity that the function f can be expanded in inverse powers of 5 = xf: 

#x2 f=- 
p+x; 

Then we may seek solutions to the boundary-layer problems defined by (2.10) and 
(2.11), as x+ co, in the form of similar expansions: 

W 

U = C g L ( q )  El-,, etc., 
0 I (5.3) 

where Po = A o  = 1 and g o ( q )  is the function g(q)  discussed in 53.3. The successive 
problems for n = 1, 2,  3, . . . are linear, the function g,(q) (representing the inner wall 
solution) being given by the equation 

gr + h0 g: + f(n - 2) gh gL - f(n - 2 )  g: gn + (+n - 1) A P, = R.H.S., ( 5 . 4 ~ )  

where the R.H.S. is known in terms of the lower-order g I  (j < n),  and the boundary 
conditions 

(5.4b) 

the last of these follows from the fact that matching to the core-flow shear is fully 
accomplished by the leading-order solution. This in general there is a unique solution 
for gn for each P, and for a given go. 

Similarly there is a unique solution for @, (representing the boundary layer on the 
outer wall) for each P, and for a given go (= g). The other outer boundary conditions 
(gk + I$, +A,,  g’, + 6, +A,)  serve simply to determine P, and A,. However, the non- 
uniqueness of the leading term (in the case of adverse pressure gradient) is 
perpetuated throughout the asymptotic expansions. 

These expansions appear to be fully determined by the far downstream solution 
and therefore not to be affected by different conditions upstream. However, as in 
conventional boundary-layer theory (Libby & Fox 1963 ; see also Pedley 1972) it is 
the appearance of eigensolutions to the homogeneous linear problem (defined by (5.4) 
with P, = R.H.S. = 0) which renders the downstream expansion indeterminate, even 
for a particular go. One example of such an eigensolution occurs for n = 3, when 

g n  = qd-290 
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satisfies the homogeneous equation and boundary conditions. Moreover this will be 
the first eigensolution, since g: is single-signed, without oscillations : 

from (3.13) (Meksyn 1961). The consequence is that the expansions (5.3) cannot 
usefully be continued beyond the n = 2 terms, but the non-uniqueness of the first few 
terms is not affected. 

To obtain the solution for small x one would expect to be able to integrate 
numerically, marching forward in x and using the small-amplitude solution of $3.1 
to start the integration off as x + 0 + . I n  the annular geometry this approach would 
presumably trace out a solution branch with the flow attached on both walls for 
small x, but eventually separated on one wall, corresponding to branch ( b )  of figure 
8, if the ultimate adverse pressure gradient (represented by 6 )  were big enough. Quite 
different upstream conditions, corresponding to particular choices for the amplitude 
of the large-x eigensolutions, would be needed to converge to one of the other solution 
branches. I n  the planar geometry, the marching procedure would naturally encounter 
the bifurcation point, as in figure 9. The integration would then probably break down 
unless the solutions were explicitly guided to one branch or the other, for example 
by assuming symmetry between the two boundary layers (as in Smith 1 9 7 6 ~ ) .  

One would expect similar findings for expansions of small slope which do not tend to 
the simple xi form. Numerical solution of the boundary-layer equations can be 
performed, marching in x as usual, but i t  will in future be necessary to recognize that 
a bifurcation point will be reached a t  a finite value o f x  (related to the rate of arca 
expansion) and that multiple solution branches will be found thereafter. 

Similar conclusions are also to be expected if the wall slype does not remain very 
small. I n  particular Smith (1976b) showed that if a = O(RP), so that h = R) and E = 
R-5 (from 2.4), then the flow structure of an inviscid core with viscous layers on the 
walls is still predicted, but the cross-stream pressure gradient is no longer negligible 
in the core. In  that case (2.7) gives 

and the consequence for the boundary-layer problems is that the two pressure 
gradients are now different, with that in the outer layer being related to that in the 
inner layer by 

P(x) = P(x)  + aA”(x), (5.5) 

where 

I n  the case where F and P are Eiven by (3.11), the alyve similarity solution is still 
valid at large x because A” oc x-s compared with P cc xz. The presence of the A” would 
influence the large-x expansion of (5.3) only a t  n = 7, and by then the eigenaolutions 
would have made the expansion useless anyway. 

The principal effect of a wall slope of O(R-)) or larger is to generate upstream 
influence, i.e. a disturbance to the oncoming flow in x < 0. Smith (1977) showed how 
an asymmetric perturbation to a planar channel near x = 0 would generate a ‘free 
interaction’ upstream. This would first be manifest as a linear disturbance, 
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proportional to elcx, where k = 5.731. Then the boundary layer on one wall would 
tend to become increasingly compressed while that on the other wall would tend 
towards separation, which would actally occur at x = -0.49 (in dimensional terms, a 
distance 0.49R4hO upstream of the wall disturbance, where h, is the channel width). 
There is no inconsistency between this flow structure and non-uniqueness of the 
downstream flow a t  an expansion. It just means that, on the one wall where reversed 
flow occurs stably downstream, separation may actually take place upstream of the 
start of the disturbance. 

In  a subsequent paper, Smith (1979) analysed upstream influence and separation 
in symmetric, constricted channel flow, showing it to  occur only 0 (logR) upstream 
of a symmetric disturbance, not O(Rf). The conclusion of this paper is that, in cases 
where the channel encounters a sufficiently severe expansion, such symmetric flow 
will never occur, and the O(Rf) structure will always be seen experimentally. 

We are grateful to Professor P.  G. Drazin for his helpful comments on a previous 
draft of this paper. Much of this work was done while M. S. B. was a research student 
at the Department of Applied Mathematics and Theoretical Physics a t  Cambridge, 
supported by a George Murray Scholarship from the University of Adelaide, and 
forms part of his Ph.D. thesis (Borgas 1986). The paper was written while T. J. P. was 
on sabbatical leave in the George W. Woodruff School of Mechanical Engineering at  
the Georgia Institute of Technology as the guest of Professor R. M. Nerem, to whom 
he is most grateful for support and hospitality. 

Appendix A. Asymptotic analysis of (3.19) and (3.20) 

The large-z solution of (3.19) takes the form 
A.1. Large z 

G(z)  - !@'+y~+B+0(1) ,  

where B is given in terms of g and y by 

B5-b'  = s 

(s = 2 1 according to the sign of the pressure gradient), but 6 and y will depend on 
the boundary conditions a t  z = 0, in particular the value of 8. Moreover 5 must be 
positive, otherwise small departures from (A 1) would grow exponentially ; to see 
that, note that the problem can be manipulated to give 

G = s exp [ - 1 G(z') dz'] . 

Not every solution of (3.19) tends smoothly to the form (A l),  however, because a 
singular solution exists : 

c , ( Z )  = -4(Z,-Z)-1 (A 3) 

for arbitrary z,. Now (A 2) shows that if s = + 1 (adverse pressure gradient) then 
G ( z )  > 0, so G ( z )  cannot tend to  the form (A 3) for any z, > 0, and will therefore tend 
smoothly to the form (A 1). On the other hand, if s = - 1 (favourable pressure 
gradient) there is the possibility of encountering the singular solution. Numerical 
integration shows that the solution tends smoothly to (A 1) if 8 > 8, x 1.5700 ... . 
When #+8,+, C+O+ so the solution becomes one of the standard Falkner-Skan 
functions, which provides a check on the numerical integration. 
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A.2. Large 181 

We seek asymptotic expansions for [,(8) and K + ( @  - as B+ & co. For large 101 we 
rescale the problems using 

z = IBl-iX, G = 181; 8, 6 = 1Bl-t (A 4) 
so that the equation and boundary conditions for 8(X) are 

(=y+(7p-+G2=sc, 

G ( O )  = G ( o )  = 0, G ( o )  = sgn (6); (A 5b) 
when B + + co, s can take either value k 1,  but when B + - co only the case s = + 1 
is relevant. 

When X = 0(1), we seek a solution to (A 5) in powers of 8: 

0 = $ T X ~  + dJl + . . . , a = sgn 8, and the O(i+term is (A 6) 

a.[l-exp(-&rX3)+~J2 exp(-Qau3)du-X exp(-ia.u3)udu 

(A 7) 
When B -++ co, so a = + 1, 
uniformly valid. As X -+ 00,  

remains O(1) for all X and the small-F expansion is 

hence 

and 

so 

These are the results given in (3.23). 

exponentially. As X +  00, (A 7) gives 
When 8 becomes large and negative (a. = - 1 and s = + l),  however, 0, grows 

0, - 2 exp ( + :X3) [i + o(X-l)], (A 8) 

x=x, * (-6logZ)~[1+0(1)], (A 9) 

so the expansion breaks down when 

and then 0 = O(X2,). Numerical integration of (3.19) shows that 0 and its derivatives 
change rapidly in the vicinity of X , ,  with 0" tending to a positive constant as X-X, 
becomes large. The following asymptotic expansion reflects this structure. 

Suppose that the rapid variation is characterized by a scale 6. Then the governing 
equation (in the form G i V + ( 7 G  = 0) shows that G must scale with R1 and it 
therefore follows that we may take &=Xi2 .  Consequently we make the trans- 
formation 

(A 10) x = X, + 87, 0 = &'d(ff) 
so that (A 5a)  with s = + 1 becomes (to leading order) 

(y + 66" - + ( a 7 2  = 0. 
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The boundary condition as ?i+ - co is that  of matching with (A 6), i.e. 
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for some constants y( > 0) and 7. Equation (A 11) subject to (A 12) and (A 13) is 
equivalent to one that was investigated by Stewartson & Williams (1973) ; from their 
numerical solution we may deduce that c= 0.1433 and 7 is arbitrary, depending on 
the choice of origin for 7. If we rewrite (3.21) in terms of 7, using (A 4), (A 9) and 
(A lo), we eventually obtain 

5 = go1 (8 log ply, y = - @$ (8 log (el); (A 14) 

from which, with the use of (3.22), (3.24) follows. We may note, incidentally, that 
convergence of the numerical solutions to these asymptotic forms is extremely slow, 
as shown in table 1 where the computed and asymptotic values of 5, and their ratio, 
are listed for values of -0 up to 10'. 

-8 g (numerical) (asymptotic) Ratio 

104 2.0 x 107 7.8 x lo6 2.6 
105 2.8 x los 1.2 x 108 2.3 
lo6 3.7 x loo 1.8 x 109 2.1 
107 4.7 x 1O'O 2.4 x 1Olo 2.0 

TABLE 1. Computed and asymptotic values of 5 and their ratio 

A.3. Implications for grossly separated $ow 
For illustration, suppose that only one of the annular walls is distorted, say the outer 
one so $ = 0, 6-+ - 00 ; suppose too that the flow is separated on the outer wall and 
not on the inner (8 < 0, 0 > 0:  solution branch ( b )  on figures 7 and 8). The above 
asymptotic expansions, together with the original scalings of $3.3, then show that 
the thin shear layer that separates the reversed from the forward flow region is 
approximately centred a t  

q, = (!)$8( c/p) i  log 181 
(i.e. X = X, in (A 9)) which is equal to -6 in this limit. In  other words the shear layer 
occurs where the outer boundary would have been if there had been no distortion of 
the wall: the flow in the channel continues undisturbed (confirmed by the fact that 
@ + 0 in this limit) and there is a large reversed-flow eddy the other side of the shear 
layer. The flow in this eddy is slow, as witnessed by the fact that  the (constant) wall 

= q,Xi  where 

shear is given by 

as $-+ - GO ; this should be compared with the very large wall shear in the attached 
flow in the inner wall, given by 

1 - 1  
g"(0)  = &y-36 x (g)i&@eexp [Q($)"-"$1]. 

Furthermore, the adverse pressure gradient, A d ,  is exponentially small in 161, and 
has negligible effect outside the backflow region. 

The above is just one of the three solutions available for large, negative 6. The 
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other two, branches (c) and (d), may be similarly analysed. An interesting feature of 
the problem is that if we have begun with an inviscid analysis, we could have 
postulated an infinite number of solutions in which the upstream flow is displaced 
and is bounded on both sides by vortex sheets which separate it from slow, reversed- 
flow eddies. The two limiting cases in which the flow remains attached on one wall 
or the other would also be included. The presence of a small viscosity, however, 
restricts the choice of solutions to three, only one of which is doubly separated in this 
way. This shows that the eddies, although weak, cannot be entirely passive when 
viscosity is included. 

Appendix B. Analysis of the bifurcation point for 1 - p  + 1 

E = (1 --p)i. In  this case 0 and 0 are both small, and we propose the expansions 
The breaking of symmetry cfin be investigated analytically for small values of 

0 = E o , + E 2 e 2 +  ..., 8 = ~ 8 , + ~ 2 8 ~ + . . . ;  

5, = 5, + 05, + 0y2 + . . . , K+ = KO + OK1 + 0 * K 2  + . . . , 
we shall also use the small - B expansions of f;, and K+ : 

where 5, = 2.014, el = 0 (because 0 = 0 is a minimum of 5+(0) -see figure 4), 
K, = - 1.374, etc. A new, scaled pressure-gradient parameter 6 is defined by 

b = ( & : ( - 2 ~ ~ + & +  ...). (B 1) 

~ : - A , ~ B , - A ,  = 0, (B 2) 

Substitution of these expansions into (3.27) and (3.28) yields 8, = -01, and 

where A, = 5 2 / ( ~ 1 Q - 2 ~ z 5 2 )  = 1.491, A, = ~ K ~ ~ , / ( K , Q - ~ K , ~ ~ )  = 2.355. 

The cubic equation (B 2) is the canonical form for this bifurcation problem ; clearly 
evident is the morphological change from one real solution when 6 is large and 
negative to three real solutions, 01 x 0(6-l), f (Al 6);, when 6is large and positive. In 
the formal limit e+O but e26= 0(1) (the planar case) the three solutions become 
precisely 0 = 0, & ( A , E ~ ~ ) : ,  as we have found numerically. When E =I= 0, the actual 
bifurcation point (6,, B,,) is given (for small E )  by 

giving 0 = - ( :~ , ) i ,  6, = SA;'(+I,)~. 

(4.0, -0.6), which is reasonably close to the exact point marked on figure 7 .  
For p = 0.8 ( E  = 0.585) this gives the bifurcation point (b,, 0,) as approximately 
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